DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes reinforcement learning to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key differentiating function is its reinforcement learning (RL) action, which was used to refine the design's reactions beyond the standard pre-training and fine-tuning process. By incorporating RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, indicating it's geared up to break down intricate queries and reason through them in a detailed way. This guided thinking procedure allows the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually captured the industry's attention as a flexible text-generation model that can be incorporated into numerous workflows such as agents, logical thinking and data analysis jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient reasoning by routing queries to the most relevant expert "clusters." This approach enables the model to specialize in different problem domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient designs to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and hb9lc.org evaluate designs against crucial safety criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit increase, produce a limitation increase demand and reach out to your account team.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent hazardous content, and assess designs against key security criteria. You can execute precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to evaluate user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.
The design detail page offers essential details about the design's abilities, rates structure, and execution standards. You can discover detailed use directions, consisting of sample API calls and code bits for integration. The model supports various text generation tasks, including content development, code generation, and question answering, using its reinforcement finding out optimization and CoT reasoning capabilities.
The page likewise consists of release options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, pick Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Number of instances, enter a variety of circumstances (in between 1-100).
6. For Instance type, pick your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure advanced security and infrastructure settings, including virtual private cloud (VPC) networking, service role approvals, and file encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you might wish to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start using the design.
When the release is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive user interface where you can try out different triggers and adjust model parameters like temperature and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For example, content for inference.
This is an outstanding method to check out the design's thinking and text generation abilities before incorporating it into your applications. The playground supplies instant feedback, assisting you comprehend how the design reacts to numerous inputs and letting you fine-tune your triggers for optimum outcomes.
You can rapidly test the design in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to perform inference using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning specifications, and sends a demand to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart provides two practical approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to help you select the technique that finest matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model browser shows available designs, with details like the service provider name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each model card shows key details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if applicable), indicating that this design can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the design
5. Choose the design card to view the model details page.
The design details page includes the following details:
- The model name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical specs.
- Usage standards
Before you release the design, it's suggested to evaluate the model details and license terms to validate compatibility with your usage case.
6. Choose Deploy to continue with release.
7. For Endpoint name, utilize the immediately generated name or produce a custom-made one.
- For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting proper instance types and counts is vital for expense and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this model, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the model.
The implementation procedure can take a number of minutes to complete.
When deployment is complete, your endpoint status will change to InService. At this moment, the design is all set to accept inference demands through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the model using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as shown in the following code:
Tidy up
To avoid unwanted charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases. - In the Managed deployments area, locate the endpoint you want to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the correct release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build innovative services utilizing AWS services and accelerated compute. Currently, he is focused on developing techniques for fine-tuning and optimizing the reasoning efficiency of large language designs. In his leisure time, Vivek takes pleasure in treking, seeing movies, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing options that assist customers accelerate their AI journey and unlock company worth.